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I. INTRODUCTION

Zirconia �zirconium dioxide ZrO2� is a highly versatile
material having excellent mechanical, thermal, chemical, and
dielectric properties; it has therefore found many technologi-
cal applications, such as high-temperature fuel cells, nuclear-
waste confinement, bone prosthetics, ceramics toughening,
and microelectronics �see Refs. 1–10 and references therein�.

Zirconia exists under five different forms which have
been fully characterized crystallographically. The monoclinic
�baddeleyite P21 /c, below 1500 K�, tetragonal P42 /nmc �be-

tween 1500 and 2650 K�, and cubic Fm3̄m �isostructural to
fluorite CaF2, above 2650 K� polymorphs are stable at room
pressure whereas the two orthorhombic Pbca and Pnma
polymorphs �respectively, isostructural to brookite TiO2 and
to cotunnite PbCl2� are stable between 3–5 GPa and 12.5–20
GPa and above 12.5–20 GPa, respectively.11–17

The structural, thermoelastic, vibrational, and dielectric
properties of the most common zirconia polymorphs at room
pressure have been investigated through first-principles
methods in Refs. 6 and 18–21 for the cubic, tetragonal, and
monoclinic ZrO2 phases. A recent study22 has investigated
such properties in the tetragonal phase under varying hydro-
static pressure, up to 40 GPa; see also Refs. 23 and 24 and
references therein for the structural and elastic properties of
the zirconia polymorphs at room pressure. The present work
is devoted to a reassessment and extension of such previous
analyses together with the first ab initio investigation of the
vibrational and dielectric properties of the two high-pressure
orthorhombic phases �an earlier computation concerning the
orthorhombic Pnma phase, Ref. 25, was based on an empiri-
cal force model�. For these purposes, we have employed
density-functional theory in both the local-density �LDA�
and the generalized gradient approximations �GGA� for the
pseudopotentials, and we have performed our study under
pressure up to 48 GPa. Based on the results so obtained on
phonons, we have derived in the present paper �hereafter
referred to as Part I�, within the quasiharmonic approxima-
tion, several observable thermoelastic quantities on which
experimental and computational information are available.
The dielectric properties and their pressure dependence are,

in turn, investigated in a second paper26 �indicated as Part II�.
We find that ZrO2 has generally positive Grüneisen pa-

rameters �see below�, and that the GGA leads to a systematic
non-negligible underestimate of the phonon frequencies,27–29

and consequently to a noticeable overestimate of the dielec-
tric constants. Nonetheless, we obtain good agreement of
either the GGA or LDA results when matched to different,
partially contradictory, experimental data on thermoelastic
properties. Only the LDA results agree, however, with previ-
ously published data for the dielectric behavior �Part II�. The
complete set of structural, vibrational, dielectric, and ther-
moelastic quantities presently computed may aid future ex-
perimental work on these five ZrO2 phases.

This paper is organized as follows: after a description of
the computational setup in Sec. II, the structural parameters
and their pressure dependence are given in Sec. III, wherein
are discussed also the zirconia transitions at 0 K. The phonon
spectra at 0 K of the five known polymorphs are computed
under varying pressure in Sec. IV. In Sec. V we discuss some
thermoelastic properties computed within the quasiharmonic
approximation �heat capacities, thermal expansion, and bulk
modulus�. Some conclusions are presented in Sec. VI.

II. COMPUTATIONAL DETAILS

A. Pseudopotentials

Hartree atomic units are used throughout. The QUANTUM-

ESPRESSO package30 was used to perform all computations.
Two sets of pseudopotentials are used in the following; both
are based on all-electron scalar-relativistic computations and
were built using the Vanderbilt ultrasoft scheme.31

1. GGA set

The first set of potentials is the PAW set used in Ref. 23.
The exchange-correlation functional is the one by Perdew,
Burke, and Ernzerhof.32

For zirconium, the fourth and fifth shell electrons are all
considered valence electrons; the cutoff radii are 1.8 a.u., 2.0
a.u., and 2.2 a.u. for the s, p, and d subshells, respectively.
Nonlinear partial core corrections33 are included. For oxy-
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gen, the valence electrons are those of the second shell; the
cutoff radius is 1.1 a.u. for both s and p subshells.

2. LDA set

The second set of Vanderbilt ultrasoft potentials is based
on the Perdew-Zunger parametrization34 of the Ceperley-
Alder computations of the electron gas.35 The potentials are
taken without modifications from Vanderbilt’s USPP

package.36

For zirconium, the valence electrons are 4s24p64d15s2

�note that the valence electrons are s2d1 instead of s2d2 as
above� with cutoff radii of 1.8 a.u., 1.8 a.u., and 1.7 a.u. for
the s, p, and d subshells, respectively. There are no core
corrections. The choice of valence electrons is the same as
above for oxygen with cutoff radii of 1.3 a.u. for both sub-
shells.

3. Sampling, cutoff energy, and convergence

The Brillouin zone �BZ� is sampled using the Monkhorst-
Pack scheme37 with �unless otherwise stated� a 4�4�4 grid
for all phases and a cutoff energy of the plane-wave expan-
sion fixed at Ecut=15 Ha.

Convergence studies are practical for the cubic and tetrag-
onal phases only; a good measure of convergence �for the
properties analyzed in Part I� is the value of the phonon
frequencies for the paths illustrated in the following. For
both phases, computations were done for the nominal 4�4
�4 grid with Ecut=15 Ha and for a 8�8�8 grid with
Ecut=30 Ha. The root mean squares of the relative errors
were found to be 25.2% and 8.62% �GGA� and 2.83% and
0.396% �LDA�, respectively; it appears that the bulk of the
errors is in the three lowest branches, as indeed the root
mean squares drop without them to 0.927 and 4.86% �GGA�
and 0.165 and 0.330% �LDA�. In the cubic case another
difficulty is created by the unstable dispersion branch along
the �-X-W direction �see below�. Because of this instability,
we have not included any results for the cubic phase derived
from the phonon density of states �DOS�.

An intermediate GGA computation with the nominal 4
�4�4 grid but Ecut=30 Ha gives for all branches a differ-
ence, with respect to the 8�8�8 computation, of 0.385%
and 2.93% for the cubic and tetragonal cases, respectively,
which seems to indicate that the source of divergence is the
energy cutoff.

The combination of a 4�4�4 grid and a cutoff energy of
15 Ha seems therefore an appropriate trade-off in the LDA
case �but apparently less so in the GGA case� of reasonable
precision and computational speed-up, much needed given
the fairly large load required by first-principles phonon cal-
culations for the ZrO2 structures considered in this work.

As to the dielectric properties, between the results ob-
tained with a 8�8�8 grid and Ecut=30 Ha and the nominal
sampling, the relative errors for all components of the elec-
tronic and lattice contributions are within 3% except for the
�11

lattice component of the tetragonal phase �GGA, 8.10%, see
Part II�.

4. LDA and GGA pseudopotentials

It is known that, with respect to the corresponding LDA
computations, elastic parameters computed with the GGA

pseudopotentials are underestimated �compare Refs. 23 and
38 with Refs. 39 and 40; see also Ref. 41 for another class of
materials�, structural parameters being conversely overesti-
mated �see Refs. 41 and 42 and Table I of the present work
for a comparative study on zirconia�; also well documented
is the tendency of the GGA pseudopotentials to soften
phonons.27–29 This comes from the fact that the generalized
gradient approximation acts as a negative pressure field by
reduction, with respect to the local-density approximation, of
the capacity of the valence electrons to screen the ion-ion
interactions;27,43 thus, as Grüneisen parameters are generally
positive �see Sec. II C 3 below�, an increase in equilibrium
volume means a decrease in the phonon frequencies.

With the exception of Ref. 29, which, exactly as with the
present GGA computations, underestimates the frequencies,
all other published results have been obtained with LDA
pseudopotentials. The same large difference on frequencies
between GGA and LDA potentials was observed with
hafnium oxide HfO2 �see Ref. 28�, which shares many struc-
tural similarities with zirconia.44

B. Computation of the phonon spectra

The computation of the vibrational properties by
QUANTUM-ESPRESSO follows the theoretical framework of
Ref. 45, based on density-functional perturbation theory. The
phonon dispersion curves are computed by interpolation of
the force constants.45

The longitudinal optic �LO�-transversal optic �TO� split-
ting is a consequence of the ionic displacements, which, at
the long-wavelength limit, generate dipoles and thus a mac-
roscopic electric field; it is taken into account through the
computation of a nonanalytic term including the Born effec-
tive charges, see Ref. 46 for details. The LO frequencies at
the k→0 limit are direction-dependent �except for the cubic
crystallographic system�, which shows in the phonon disper-
sion curve under the form of discontinuities at the � point.

The vibrational DOS is computed with the tetrahedron
method,47,48 as implemented in QUANTUM-ESPRESSO; the cal-
culation of partial DOS has been added to the original code.
The weight of each crystallographic orbit �i.e., the subset of
atoms in the crystal whose positions are related by an opera-
tion in the space group� is, for each phonon branch and each
sample point in the BZ, the relative sum of the norms of the
polarization vectors of the atoms belonging to that orbit; no
smoothing has been applied. The density of states has been
normalized to 1 in order to compare the various phases.

C. Quasiharmonic approximation and Grüneisen
parameters

1. Methodology

We follow standard treatments, see, for instance, Refs.
49–54. In the quasiharmonic approximation, the phonon den-
sity of states only depends on the volume V, the temperature
dependence being taken into account indirectly through V.
The phonon spectra are first computed for a number of equi-
librium volumes Vi �each corresponding to a different pres-
sure�; the thermodynamic potential F�Vi ,Tj� at various tem-
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peratures Tj is then calculated as indicated in the next
paragraph, and finally the F�Vi ,Tj� are interpolated at fixed
Tj through an equation of state �EOS�. The third-order Birch-
Murnaghan �BM� EOS �Refs. 55 and 56� is used in the fol-
lowing. This procedure enables to find not only the evolution
with temperature of the equilibrium free energy and volume
at p=0 but also of the bulk modulus B=−V�p /�V.

The quasiharmonic approximation is expected to be rea-
sonably accurate up to approximately half the melting tem-
perature �Tmelt=2983�15 K for zirconia57�. Beyond this
threshold, anharmonic effects �such as phonon-phonon inter-
actions� become important; see Ref. 21 for a detailed discus-
sion and application to cubic zirconia.

2. Free-energy computation

If N is the number of atoms in the primitive unit cell, and
if we neglect �as zirconia is an insulator� the electronic con-

tribution, the free energy F is the sum of the energy E0 of the
crystal at T=0 K �as computed by density-functional theory�
and of the vibrational free-energy Fvib arising from the ionic
motion

F = E0 + Fvib, �1�

the last term can be written

Fvib = 3N�
0

+� ���

2
+ kBT ln�1 − e−x��g���d� ,

where x=�� /kBT, g��� is the normalized density of states
��0

+�g���d�=1�, and kB the Boltzmann constant. The inter-
nal energy E=E0+Evib �including the zero-point energy�, the
entropy S=−��F /�T�V and the heat capacity at constant vol-
ume Cv= ��E /�T�V can be computed as follows:

TABLE I. Computed structural parameters, at p=0, of the known polymorphs of zirconia; see Ref. 23 for details and a summary of the
published results. The space group is indicated on the leftmost column, the lattice parameters in the middle column, the Wyckoff positions
�Ref. 58� with the value of the free parameters �contravariant coordinates�, on the right. Origin choice 2 was taken for the tetragonal
polymorph. The orbit labeling indicated here is used in the following figures.

Phase Lattice parameters Crystallographic orbits and parameters

GGA �15 Ha�

Cubic Fm3̄m a=0.5118 nm Zr 4a

O 8c

Tetragonal P42 /nmc a=0.3622 nm, c=0.5284 nm Zr 2a

O 4d z=0.05725

Monoclinic P21 /c a=0.5190 nm, b=0.5243 nm, Zr 4e x=0.2758, y=0.04372, z=0.2100

c=0.5379 nm, 	=99.65° O�1� 4e x=0.06513, y=0.3266, z=0.3498

O�2� 4e x=0.4509, y=0.7568, z=0.4755

Orthorhombic Pbca a=1.015 nm, b=0.5299 nm, Zr 8c x=0.8843, y=0.03489, z=0.2519

c=0.5132 nm O�1� 8c x=0.7888, y=0.3728, z=0.1247

O�2� 8c x=−0.02193, y=0.7388, z=0.4977

Orthorhombic Pnma a=0.5599 nm, b=0.3375 nm, Zr 4c x=0.2490, z=0.1071

c=0.6549 nm O�1� 4c x=−0.02120, z=0.6586

O�2� 4c x=0.3610, z=0.4223

LDA �15 Ha�

Cubic Fm3̄m a=0.5028 nm Zr 4a

O 8c

Tetragonal P42 /nmc a=0.3558 nm, c=0.5110 nm Zr 2a

O 4d z=0.04260

Monoclinic P21 /c a=0.5085 nm, b=0.5183 nm, Zr 4e x=0.2777, y=0.04226, z=0.2094

c=0.5240 nm, 	=99.46° O�1� 4e x=0.07296, y=0.3420, z=0.3365

O�2� 4e x=0.4476, y=0.7582, z=0.4816

Orthorhombic Pbca a=0.9973 nm, b=0.5212 nm, Zr 8c x=0.8848, y=0.03465, z=0.2531

c=0.5030 nm O�1� 8c x=0.7907, y=0.3759, z=0.1292

O�2� 8c x=−0.02287, y=0.7389, z=0.4976

Orthorhombic Pnma a=0.5521 nm, b=0.3283 nm, Zr 4c x=0.2454, z=0.1134

c=0.6425 nm O�1� 4c x=−0.02587, z=0.6624

O�2� 4c x=0.3594, z=0.4268
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Evib = 3N�
0

+� ���

2
+

��

ex − 1
�g���d� ,

S = 3NkB�
0

+� � xex

ex − 1
− ln�ex − 1��g���d� ,

Cv = 3NkB�
0

+�

ex� x

ex − 1
�2

g���d� .

The molar values are deduced by multiplying these quanti-
ties by NA�3 /N, NA being the Avogadro constant, as there
are 3NA atoms for each mole of ZrO2. Finally, the heat ca-
pacity at constant pressure is given by Cp=Cv+
2VB0T,
where 
 the coefficient of thermal expansion at constant
pressure �� ln V /�T�p.

3. Grüneisen parameters

The Grüneisen mode parameters �i �see, for instance,
Refs. 50 and 51� are a measure of the volume dependence of
the vibrational energy

�i = − 	 � ln �i

� ln V



T,0
= −

V0

�i,0
	 ��i

�V



T,0
,

where �i is the frequency �wave numbers� of the ith mode
and the subscript 0 refers to the reference state at p=0. Grü-
neisen parameters lie generally between 1 and 2 �see Ref.
50�. They are related to the variation in wave numbers with
pressure by

�i = −
V0

�i,0
	 �p

�V



0
	 ��i

�p



0
=

B0

�i,0
	 ��i

�p



0
. �2�

III. STRUCTURAL PROPERTIES

A. Results at p=0, T=0

A summary of the structural properties of the five poly-
morphs, obtained for both GGA and LDA sets of potentials,
is given in Table I; a full report including the elastic proper-
ties and further details regarding the GGA set are available in
Ref. 23. Both the structural parameters obtained with the
GGA set in Ref. 23 and those obtained with the LDA set in
the present work are in line with the corresponding previ-
ously published computations.23

The ground-state energy of each phase at p=0 is given in
Table II; the hierarchy is the same for both sets of potentials.
As in a previous study,42 the LDA gives energy differences
systematically smaller than the GGA. An important conse-
quence is the underestimate of the pressures and tempera-
tures of transitions, as discussed in Secs. III C and V A, re-
spectively.

B. Pressure dependence of the structural parameters

The variation with pressure of the lattice parameters is
presented in Fig. 1 for the LDA; the GGA results are similar
with, however, a larger dependence on pressure. Table III

presents the compressibilities for the various polymorphs of
zirconia. As expected, the LDA lowers the values of the
compressibilities �compare with the GGA results given in
Table III of Ref. 23�.

C. Enthalpy and pressures of transition

The thermodynamic potential at T=0 K is the enthalpy
H=E+ pV, where E is the internal energy, i.e., the E0 of Eq.
�1�, p the pressure, and V the volume. Figure 2 represents,
for the five polymorphs, the pressure dependence of the ex-
cess of enthalpy with respect to that of the monoclinic phase.

As can be seen, the orthorhombic Pbca becomes the most
favored phase at around 8 GPa �left arrow in Fig. 2; the
computation with the interpolated BM EOS gives 7.97 GPa�
but the orthorhombic Pnma phase, in turn, becomes more
energetically favored at 13.0 GPa �right arrow�. As discussed
above, LDA computations strongly underestimate these val-
ues, giving, respectively, 3.49�0.01 GPa and
4.46�0.02 GPa. The values obtained through the GGA are
instead rather good. Indeed, the experimental data for the
monoclinic-to-orthorhombic Pbca transition vary between
3–4 �Refs. 17 and 59� and 10 GPa;13,16 the present compu-
tation is within the experimental range and compares favor-
ably with the transition pressure of 6.64 GPa computed
through the GGA in Ref. 38.

The pressure experimentally observed for the orthorhom-
bic Pbca to orthorhombic Pnma phase transition varies from
12.5 �Ref. 17� to 25 GPa �Refs. 13 and 16�; Refs. 38 and 39
report 9.20 GPa and 19.1 GPa, respectively. Again the
present computation is within the experimental range. This
transition is characterized by an increase �from 7 to 9� in the
Zr coordination number, typical of high-pressure packing
�see, for instance, Refs. 60–62 and references therein�.

It is interesting to note that, above 24 GPa, the monoclinic
phase is computed to have the highest enthalpy of all phases,
in total contrast with the situation at 0 GPa.

IV. PHONON SPECTRA

The conventional reciprocal cell and the notations of
Miller and Love63,64 for the high-symmetry points of the BZ

TABLE II. Computed ground-state energy difference and bulk
moduli, both at 0 K and p=0, of the various phases of zirconia. The
relative difference 
E is given with respect to the monoclinic poly-
morph for both LDA and GGA sets of potentials. The bulk modulus
B0 is obtained with the BM EOS in the LDA case. See Ref. 23 for
other data on elastic properties.

Phase


E
�meV/atom�

B0

�GPa�

LDA GGA LDA GGAa

Monoclinic P21 /c 0 0 165.6�0.9 193

Orthorhombic Pbca 8.708 22.49 224.7�0.5 210

Tetragonal P42 /nmc 16.62 37.34 202.1�0.2 172

Cubic Fm3̄m 31.26 71.74 261.6�0.2 235

Orthorhombic Pnma 41.34 114.6 262.8�0.5 213

aReference 23.
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and the irreducible representations are used in the following.
Wave vectors are given in reduced coordinates, i.e., in units
of 2� over the lattice parameter of the given direction. There
is a direct group-subgroup relationship between the symme-
try groups of the cubic, tetragonal, and monoclinic
phases;65–67 but there exists no such relationship between the
symmetry groups of the cubic and the two orthorhombic
phases compatible with the number of atoms in the primitive
cells and the respective Wyckoff positions, and none also
between the two orthorhombic phases.

In the following we present the phonon-dispersion curves
and density of states at p=0 and discuss their dependence on
pressure.

A. Cubic Fm3̄m phase

It has been observed experimentally that the cubic phase
is not stable until 2650 K �see, for instance, Refs. 3, 13, and
68�. From a group-theoretical analysis,65 in this case symme-
try allows for an instability related to the X2

− irreducible rep-

resentation of Fm3̄m, whose eigenmode has atomic displace-
ments of the oxygen sublattice along the cubic fourfold axes,
leading to the tetragonal polymorph �see Fig. 3 in Ref. 65�;
this X-point instability is confirmed by several
computations6,18,20,21,69 �at T=0, except for Ref. 21�.

Figure 3 represents the phonon-dispersion curves for the
GGA �dashed� and LDA potentials �continuous lines�. As

Fm3̄m

P42/nmc

P21/c

Pbca

Pnma

Key

a

b
c

FIG. 1. Pressure dependence of lattice parameters for the five polymorphs of zirconia, as computed with the LDA set of pseudopotentials.
Lattice parameters �a: filled squares, b: filled circles, and c: filled triangles� are in nm, pressure in GPa. The phase is indicated just below
each panel. Lines joining the computed points are a guide for the eyes, not interpolations.

TABLE III. Compressibilities �in 10−3 GPa−1� of the zirconia phases, as computed with the LDA set of pseudopotentials.

Phase ��100� ��010� ��001�

Fm3̄m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0.9266�0.0218. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P42 /nmc . . . . . . . . . . . . . . . . . . .0.9847�0.0293. . . . . . . . . . . . . . . . . . . 1.393�0.071

P21 /c 1.365�0.350 0.3900�0.1255 5.264�0.2688

Pbca 1.439�0.031 0.7547�0.0421 1.877�0.041

Pnma 0.8869�0.0207 0.9874�0.0553 0.7339�0.0296
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expected, two main features appear: �i� to the X point and
more precisely to the X2

− eigenmode, corresponds an instabil-
ity; �ii� the GGA values of the phonon frequencies are sys-
tematically lower than their LDA counterparts.

The computed acoustic branches are in good agreement
with the neutron scattering data70 on a stabilized sample
�Y2O3 at 20 mol %�; there is, however, disagreement on the
infrared optical measurements �filled circles on the � line at
around 10 and 20 THz�, see the end of this section for the
LDA values of the frequencies. The discrepancy is caused by
doping; indeed, for a high concentration of dopants, struc-
tural disorder associated with oxygen vacancies71 �as Y is
trivalent whereas Zr is tetravalent� has noticeable effects on
the infrared and Raman spectra.72–75 The flattening of the
lowest acoustic branch at the W point is also observed at
higher cutoff energies and BZ sampling, and �even if not as
clearly� in Ref. 20, Fig. 1.

As remarked in the latter work, the zirconium ions, being
about six times heavier than the oxygen ions, contribute al-
most only to the low-frequency �less than 10 THz� modes. In
all polymorphs the oxygen ions are responsible instead of the
high-frequency modes; in the cubic case, the latter are also
responsible for the unstable modes.65 The eigenmodes of all
phases are generally mixed bending-stretching modes, which
might be seen as more or less distorted and asymmetric
“breathing” modes of the Zr coordination polyhedron. The
density of states is characterized by two strong peaks: the
first one corresponds to the X-W-L part of the stable acoustic
branches �see Fig. 3�, whereas the second one corresponds to
the frequency domain of the Raman-active T2g mode �see
Table IV in Part II�.

As pressure increases, the square of the frequency at the X
point increases until becoming positive between 30 and 33
GPa; Ref. 21 found the same behavior when increasing tem-
perature. The Grüneisen parameters at the � point are all

positive; the values for the infrared-active T1u mode at 7.95
THz �265.1 cm−1, TO� and 19.90 THz �663.9 cm−1, LO� are
4.138�0.007 and 1.186�0.016, respectively. We have
found 1.499�0.020 for the T2g Raman-active mode at 17.43
THz �581.4 cm−1�; the first value is unusually high and the
discussion in the next paragraph on the tetragonal Eu modes
applies also here.

B. Tetragonal P42 Õnmc phase

The tetragonal phase is known experimentally to be stable
above 1400 K; owing to the wide field of applications of the
tetragonal-to-monoclinic transition in ceramics toughening,
the respective domain of stability of the two phases has been
studied extensively �see, for instance, Refs. 3, 44, 68, and
76–80�; yet a detailed microscopic mechanism for the tran-
sition, on which all authors agree, appears to be still lacking.
A group-theoretical investigation66 shows that the simulta-
neous activation of two modes �corresponding to the irreduc-
ible representations M1 and M2 of the M = � 1

2
1
20� point� gives

a possible mechanism; see Fig. 3 in Ref. 66. A related
mechanism has been described in Ref. 9; both works agree
with many experiments on the relative crystallographic ori-
entation of the monoclinic and tetragonal phases. On the
other hand, a different mechanism, related to the activation
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of a Z-point instability, agrees with some other experimental
data on the orientation relationships, see Ref. 81 and refer-
ences therein.

First-principles computations have so far not been able to
help clarify this issue, as no instabilities have been observed
at 0 K; the distance to the transition temperature �which is
between 1200 and 1500 K, see Ref. 44� might explain this.
In Ref. 82, the authors found the M unstable mode by using
a lattice-dynamical treatment and by computing the phonon
spectrum in the neighborhood of the transition temperature
�1400 K�. In Fig. 4 we also notice the low value of the
smallest frequency at the Z point, lower than that at the M
point, in agreement with Ref. 20.

The density of states bears many similarities with its cu-
bic equivalent but also shows the dense occupation of states
�because of an increased number of atoms in the primitive
cell� which is typical of the monoclinic and the two ortho-
rhombic polymorphs from 2.5 to 18 THz, as well as a gap
around 19.5 THz and a strong peak near 20.75 THz, a feature
also found in the orthorhombic Pnma phase.

Table IV summarizes the LDA results for the Grüneisen
parameters of the optical modes. The GGA results show
again a strong systematic softening �as seen in Fig. 4� aver-
aging 4.5% �root mean square of the relative errors� and �by

overestimate of the equilibrium volume� a marked difference
with the LDA results as to the pressure dependence. This is
further amplified for the two Eu infrared-active modes, which
exhibit high values of the Grüneisen parameters and are thus
very sensitive to volume changes. This explains �see Part II�
the failure of the GGA potentials to correctly estimate the
dielectric permittivity tensor. The LDA results are on the
other hand quite satisfactory and show a good agreement
with experimental Raman spectroscopy data83 �see Table
IV�.

Another interesting point is the existence of a negative
value of the Grüneisen parameter for the A1g Raman-active
mode, which should lead to a �-point loss of stability of the
tetragonal phase as pressure increases. Reference 22 shows,
however, that a transition to the cubic phase occurs at 37
GPa, before the loss of stability of the A1g mode; we have
indeed checked with a direct computation at 36 GPa that �i�
the wave number for the A1g mode is still positive
�52.0 cm−1� but the Raman activity of this mode has practi-
cally vanished �see Fig. 2 in Part II�; �ii� the c /a ratio is
nearly �2 and the atoms are almost in the positions they
occupy in the cubic phase, and �iii� the anisotropy factor of
the static dielectric tensor �33 /�11 is 0.979, very close to 1.

TABLE IV. Grüneisen mode parameters at the � point for the tetragonal phase; indicated wave numbers
�in cm−1� are at p=0. The parameters have been computed by linear interpolation for pressures between −12
and 12 GPa corresponding to the linear regime. The pressure dependence of the frequencies is computed
using Eq. �2� and the value of the bulk modulus at 0 K found in Table II.

Infrared
�i

�cm−1� �i

A2u �TO� 333.5 0.883�0.013

�LO� 653.7 1.06�0.03

Eu �TO� 148.3 8.91�0.29

�LO� 261.9 0.479�0.042

Eu �TO� 440.1 3.72�0.19

�LO� 725.8 0.221�0.009

Raman
�i

�cm−1� �i

��� /�p�0

�cm−1 GPa−1�
LDAa LDAb Expt.c

A1g 264.8 −2.52�0.28 −3.30�0.37 −3.77 −3.59

B1g 323.2 2.35�0.03 3.76�0.04 3.03 3.43

598.3 0.886�0.032 2.62�0.10 2.53 2.41

Eg 144.5 2.69�0.04 1.92�0.03 1.49 1.75

464.6 2.25�0.14 5.17�0.32 5.14 5.58

647.0 0.829�0.011 2.65�0.04 2.30 2.79

Silent
�i

�cm−1� �i

B2u 661.8 1.40�0.03

aPresent computation.
bReference 22.
cReference 83.
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C. Monoclinic P21 Õc phase

The monoclinic phase is the only naturally observed poly-
morph �as the rare mineral baddeleyite�; it is therefore be-
lieved to be globally stable at ambient conditions. Mono-
clinic zirconia is indeed computed to be the most stable
polymorph at ambient pressure by all references23,29,38,42,84,85

except Ref. 39.
Present computations of the phonon spectrum at p=0, as

seen in Fig. 5, show no signs of instability and no particular
features. Given the larger number of atoms in the primitive
cell, the density of states looks more like a broadband with
some less-prominent peaks; a distinctive feature, found also
with the two orthorhombic polymorphs, is the strong and
relatively constant contribution of Zr ions up to 10 THz.

The monoclinic phase has several modes with negative
Grüneisen parameters, most notably some infrared-active �Au
at 183.8 and 239.7 cm−1, Bu at 230.7 cm−1�, and some
Raman-active modes �Bg at 320.7 and 488.2 cm−1�; the val-
ues are, however, not always numerically well constrained.
The maximal value is obtained for the LDA case at
2.70�0.23 �Ag at 193.2 cm−1�; the GGA gives instead
3.74�0.64 for the same mode with a wave number of
98.8 cm−1. A direct computation with the LDA potentials at
24 GPa shows the existence of an unstable branch along the
D-B line with a minimum close to the B point; this behavior
is neither observed at lower pressures nor confirmed by the
GGA computations. Such instability cannot be related to the

transition to the orthorhombic Pbca polymorph, known ex-
perimentally to occur between 3–4 �Refs. 17 and 59� and 10
GPa �Refs. 13 and 16�, see Sec. III C above.

D. Orthorhombic Pbca phase

The Pbca polymorph has the lowest enthalpy at zero
pressure of all phases except the monoclinic;23,38,84 it has,
however, not been recovered at ambient conditions �see Fig.
3 of Ref. 81 and Ref. 59�. The Pbca structure is somewhat
anomalous for a high-pressure phase, having a rather low
coordination number �7, against 8 for the cubic and tetrago-
nal polymorphs� and a relatively open structure; for instance,
its calculated mass density is almost equal to that of the
tetragonal phase and smaller than that of the cubic phase
�5900 for both P42 /nmc and Pbca against 6100 kg m−3 for

Fm3̄m polymorphs�, and its packing ratio is 0.40 just as the
tetragonal phase, against 3��3 /32�0.51 for the fluorite
structure.

The dispersion curve, depicted in Fig. 6, does not show
any particular features; no gaps are noticeable with the ex-
ception of the 15 THz region. The density of states shows
instead strong coupling among the three orbits in the crystal
below 10 THz, just as in the monoclinic case, but also be-
tween the two oxygen orbits above 10 THz. This indicates
that, for the high-frequency bending modes, all Zr-O bonds
are nearly equivalent �in spite of the separation of oxygen
ions into two crystallographic orbits�.
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FIG. 4. �Color online� Phonon-dispersion curve along the high-
symmetry directions of the BZ �top� and density of states �bottom�
at p=0 of the tetragonal phase �LDA only for the latter�.
Continuous/dashed lines in the top panel refer to LDA/GGA com-
putations, respectively. No soft modes are observed.
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The Grüneisen parameters at the � point are all positive,
ranging from 0.277�0.06 �B1u at 180.2 cm−1� to 2.82�0.04
�B1u at 410.4 cm−1�; both modes are infrared active. No
negative parameters have been found elsewhere in the BZ
�just as for the cubic case�. The transitions to either the
tetragonal3,59 or the Pnma phase �discussed in Sec. III C
above� are therefore not expected to be driven by vibrational
instabilities, see Refs. 59, 86, and 87 and references therein.

E. Orthorhombic Pnma phase

The second orthorhombic polymorph is the high-pressure
form of zirconia.15,23,38,42 However, in contrast to the Pbca
polymorph, the Pnma phase has been recovered at ambient
pressure;15 it is therefore expected not to exhibit soft modes
at p=0 GPa. This phase is characterized by the highest co-
ordination number �9� among all zirconia phases for Zr ions
and also the highest mass density �6600 against 5700 kg m−3

for the monoclinic polymorph�, typical of high-pressure
structural modifications; it is, however, still an open struc-
ture, having a packing ratio of 0.506 at zero pressure, imply-
ing a strong rigidity of the Zr-O bonds.

The dispersion curve, Fig. 7, shows no particular features,
just as for the monoclinic and the orthorhomic Pbca phases.
The density of states is very similar to that of the monoclinic
phase with, however, a noticeable gap at 19 THz �similar to
the one seen for the tetragonal phase� and a strong peak at 20
THz �bond bending�.

At the � point, the Grüneisen parameters range from
0.983�0.03 �Raman-active Ag mode at 435.7 cm−1� to
4.37�0.37 �infrared-active B1u mode at 181.2 cm−1�. Ex-
actly as for the other orthorhombic polymorph, the Pnma
phase has no negative Grüneisen parameters in the whole
BZ. This is consistent with the fact that no other high-
pressure polymorph is known to exist; indeed, the observa-
tions of a new high-pressure phase11,12 have not been con-
firmed by later experiments.

V. THERMOELASTIC PROPERTIES

A. Monoclinic-to-tetragonal phase transition

As discussed above, the monoclinic-to-tetragonal phase
transition, which occurs between 1200 and 1500 K, is of
great importance because of its relevance, for instance, in
ceramics toughening �see Refs. 3 and 4 and references
therein�. A summary of the published literature regarding the
thermodynamic data on the transition is available in a recent
paper;44 see also the references in Ref. 81.

The LDA computations predict �see Table V� a transition
temperature of about 960 K, which is too low;44 this is a
consequence of the underestimate of the ground-state energy
difference between the tetragonal and monoclinic phases.
The GGA gives a much better result, see again Table V;
computed calorimetric properties in the GGA case are in line
with the experimental results published in Ref. 44. The rela-
tive change in volume is 1−Vt /Vm=3.5%, comparable to the
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FIG. 6. �Color online� Phonon-dispersion curve along the high-
symmetry directions of the BZ �top� and density of states �bottom�
at p=0 of the orthorhombic Pbca phase. No soft modes are
observed.
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at p=0 of the orthorhombic Pnma phase. No soft modes are
observed.

FIRST-PRINCIPLES STUDY… . I. STRUCTURAL,… PHYSICAL REVIEW B 82, 064105 �2010�

064105-9



experimental value of 3.2% at 1480 K reported in Ref. 78.

B. Thermal expansion

We present the results first in the tetragonal and mono-
clinic cases for which experimental data are available �see
Fig. 8�. The agreement with experiment is very good in the
monoclinic case for both the LDA and GGA results. This is
also true for the tetragonal case, which, however, offers a
typical example of the experimental difficulties faced with
zirconia: “�…� it is not clear with which of the different
experimental data the theory must agree.”25 Indeed, in this
case the LDA shows a good agreement with Ref. 88
�neutron-diffraction data�, even though it underestimates the
high-temperature ��2000 K� expansion, as a consequence

of the limited validity at high temperatures of the quasihar-
monic approximation presently used. On the contrary, the
GGA results are in poor agreement with these data, but in
very good agreement with those in Ref. 78 �also neutron
diffraction�. Twinning in the monoclinic samples13 might be
the cause for the experimental discrepancies.

The thermal expansion of all polymorphs but the cubic
phase �see Sec. II A 3� is illustrated in Fig. 9; the relative
volume change is very similar for all the four examined
polymorphs.

C. Entropy and heat capacities

The results for the monoclinic phase only are given, as no
other experimental data are available. As seen in Fig. 10, the
agreement with experiment is very good in both the LDA
and GGA cases.

D. Bulk modulus

We present the LDA results regarding the bulk modulus of
the same four phases. Apart from the tetragonal phase, which
exhibits an anomalous increase in the bulk modulus with
temperature �which might be a consequence of the quasihar-
monic approximation�, the other phases show a decline. The
computed behavior for the monoclinic polymorph is at vari-
ance with available experimental data,93 both in magnitude
and in trend �see Fig. 11�, as the computations of Ref. 29; it
should, however, be noted that the value of the compressibil-
ity ��010� as deduced from Ref. 93 is negative, which implies
that these experimental data are not completely reliable.

VI. CONCLUSIONS

The phonon spectra and densities of states of the five
known zirconia polymorphs have been computed through
density-functional perturbation theory to a pressure of 48
GPa. The agreement with the available published data is gen-
erally good, both computational and experimental. We find
that these properties in the two high-pressure orthorhombic
phases are similar to those in the monoclinic polymorph, as
was already observed for the elastic moduli in a previous

TABLE V. Computed parameters of the monoclinic-to-
tetragonal phase transition.

Potentials
T

�K�

S

�J K−1 mol−1�

H=T
S
�kJ mol−1�

LDA 970�5 2.964 2.875

GGA 1345�5 4.862 6.552
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investigation.23 As for hafnia,28 the GGA leads to a system-
atic phonon softening with respect to the LDA; this comes
from the large positive values of the Grüneisen mode param-
eters.

Within the quasiharmonic approximation, several ther-
moelastic quantities have been computed, as they are inter-
esting per se and also constitute an indirect check on the
phonon computations. We find the thermoelastic experimen-
tal data to be in very good agreement with either the GGA or
the LDA results �see especially thermal expansion in Fig. 8�,
depending on the selected experimental data; for the GGA
we also obtain rather good values of the transition pressures
�Fig. 2�. The LDA, on the other hand, is fairly good overall,
giving good results for the dielectric constants �Part II�, but
transition pressures and temperatures in poor agreement with
experiment.

Cubic zirconia is computed to be unstable up to 2570 K
�Ref. 21� and 31.5�1.5 GPa �present computations� be-
cause of a soft mode at the X point. We have confirmed the
existence of a stability exchange between the tetragonal and
cubic phases at around 36 GPa, as previously indicated in

Refs. 22 and 83. However, at 0 K, the enthalpy of the cubic
phase remains higher than that of the orthorhombic Pnma
phase, even beyond 48 GPa �see Fig. 2�; for instance, 
H
=196 meV /atom at 36 GPa and 227 meV/atom at 48 GPa
�LDA�; therefore the Pnma polymorph remains the observed
structure in that range of pressures.

The monoclinic and tetragonal phases both experience a
phonon-softening instability. For the first, this is computed to
occur between 18 and 24 GPa according to our LDA calcu-
lations. For the second, the tetragonal phase is known to
undergo a transition to the monoclinic phase around 1200–
1500 K �see Ref. 44 and references therein�; two possible
mechanisms based on different orientation relationships have
been proposed in Refs. 66 and 94. While the method of Ref.
21 is computationally expensive, it may, in principle, help
clarify the transition mechanism at high temperatures, given
that, in both our computations and in Ref. 20, the smallest
frequency at 0 K at the Z point has a lower value than that at
the M point.

The two orthorhombic phases have been computed to ex-
hibit no vibrational instabilities; this is expected at least for
the Pnma polymorph, as no other high-pressure phases are
known and suggests other mechanisms than phonon soften-
ing for the Pbca-to-Pnma transformation. This goes along
with the fact that, given the very different structures �see Fig.
1 of Ref. 23� of these two polymorphs, large atomic displace-
ments are involved in this phase transition, in order to in-
crease the periodicity along �100�Pbca and the coordination
number of Zr ions.
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